Lecture 30

Trees

Definition: A **tree** is a connected graph with no cycles.

Examples:

n = 5

Alternative Characterisation of Trees

Theorem: The following assertions are equivalent for a graph G: 1) G is a tree.

- 2) Any two vertices are connected by a unique path in G. 3) G is minimally connected, i.e., G is connected but G - e is disconnected for

every edge $e \in G$.

- **Proof:** We will prove $1) \implies 2) \implies 3) \implies 1)$.
- 1) \implies 2): Suppose there are vertices u and v in G connected with two paths P and Q.

P and *Q* will diverge at some point

L

A cycle, a contradiction.

• • •

Alternative Characterisation of Trees

2) \implies 3): Take any edge $e = \{u, v\}$ in G.

If G - e is still connected, then there must be a path from u to v, say P. But this implies that there are two paths from u to v in G, i.e., P and $\langle u, v \rangle$. Hence, a contradiction.

• • •

Alternative Characterisation of Trees

3) \implies 1): If G is minimally connected, then G is connected.

We now show that G - e is still connected, hence a contradiction. Let $u, v \in G$.

- If the path P from u to v in G doesn't use e, then P will exist in G e.
- If the path from u to v in G uses e, then we can replace e in P with C e to create a "walk" from u to v. And a "walk" from u to v, implies a path from u to v.

Suppose G contains a cycle C. Let $e = \{v_i, v_{i+1}\}$ be an edge in C.

Leaves in a Tree

Definition: Leaves in a tree are vertices of degree one.

Theorem: Every tree of at least two vertices contains at least two leaves. **Proof:** Let $P = \langle v_0, v_1, v_2, \dots, v_k \rangle$ be a longest path in a tree T. v_3

 v_0 cannot have a neighbour not in P. Otherwise, we can extend P to a longer path. v_0 cannot have a neighbour apart from v_1 in P. Otherwise, it will create a cycle. Hence, degree of v_0 is one. Similarly, v_k is also of degree one.

Edges in a Tree

Theorem: Every tree of *n* vertices contains n - 1 edges.

- **Proof:** We will prove it using induction.
 - **Basis Step:** Trivially true for tree of 1 vertex.

 - prove it for tree of k + 1 vertices.
 - Let T be a tree of k + 1 vertex and
 - Clearly, T' is a tree of k vertices.
 - From inductive hypothesis, T' contains k-1 edges.
 - Deletion of u caused deletion of only one edge in T.
 - Hence, T contains exactly one more edge than T', i.e, k.

Inductive Step: Assume the theorem is true for all the trees of k many vertices and

$$T' = T - u$$
, where u is a leaf.

Forest

Definition: A collection of trees is called a **Forest.**

Example: A forest of 13 vertices and 3 trees.

Theorem: Let F be a forest of n vertices and k trees. Then F contains n - k edges. **Proof:** DIY.

